ROSALBA CEFALÙ, L. PELLERITO AND R. BARBIERI

Istituto di Chimica Generale ed Inorganica, Università di Palermo, 90123 Palermo (Italia) (Received April 14th, 1971)

SUMMARY

The nature of methanol solutions of a series of bis(acetylacetone)ethylenediimine adducts of organotin(IV) halides has been studied by electronic and PMR spectroscopy and by osmometry and conductivity. Effectively complete dissociation to the free ligand and solvated organotin(IV) halide moieties is inferred.

INTRODUCTION

The existence of a new class of organometal halide adducts, formed with the potentially tetradentate ONNO ligands bis(acetylacetone)ethylenediimine (Acen) and bis(acetylacetone)-1,2-propylenediimine (Acpn) was reported earlier¹. Subsequent IR and Mössbauer studies on solid organotin(IV) halide-Acen adducts gave evidence for a polymeric structure of octahedral type, in which the organotin moieties are bridged by the neutral ligand, presumably through coordination on tin(IV) by NN basic atoms². The work reported in this paper involved a study of the nature of solutions of the Acen adducts.

EXPERIMENTAL

The organotins were Fluka and Alfa Inorganics products. Reagents and solvents were analytical grade (C. Erba, Milano), which were purified and/or dried where necessary by standard procedures. The ligand Acen was prepared and recrystallized as elsewhere reported^{3,4}. The 1/1 Acen adducts of Me₃SnCl, Me₂SnCl₂, Me₂SnBr₂, Bu₂SnCl₂, Ph₂SnCl₂ and MeSnCl₃ were prepared as previously described^{1,2}. The new compound Ph₃SnClAcen was made by mixing n-hexane solutions of Acen and Ph₃SnCl. M.p. 86–87°. (Found: C, 59.34; H, 5.72; Cl, 6.11; N, 4.71; O, 5.50; Sn, 19.29. C₃₀H₃₅CIN₂O₂Sn calcd: C, 59.08; H, 5.78; Cl, 5.81; N, 4.60; O, 5.25; Sn, 19.47%.)

The electronic spectra were measured at 25° in anhydrous methanol (the solute concentration ranging between 4×10^{-5} and 2×10^{-6} M), with Beckman DU and DK-2A spectrometers, 10 mm optical path cells. The results are reported in Fig. 1.

The PMR spectra were determined with a Jeol C60 spectrometer operating at

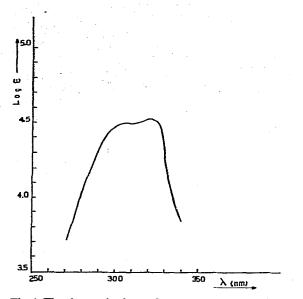


Fig. 1. The electronic absorption spectrum of Acen, R_3 SnClAcen (R = Me, Ph), R_2 SnCl₂Acen (R = Me, Bu, Ph), Me₂SnBr₂Acen and MeSnCl₃Acen in methanol solution. Absorptivities (ϵ , $M^{-1} \cdot cm^2$) at band maxima are as follows: $\lambda = 304$ nm, log $\epsilon = 4.529$; $\lambda = 322$ nm, log $\epsilon = 4.548$.

TABLE 1

PMR SPECTRA OF ORGANOTIN HALIDES AND THEIR Acen ADDUCTS $T=25^\circ$; $\delta(TMS)$ 0; solvent CD₃OD, unless otherwise stated.

Compound	Chemical shift (ppm)			J(¹¹⁷ SnCH)	J(¹¹⁹ SnCH)
	SnCH ₃	CCH3	-CH2	(Hz)	(Hz)
Acen ^a		1.93	3.48		
Me ₃ SnClAcen	0.58	1.93	3.48	64	67
Me ₃ SnCl	0.58			64	67
Ph,SnClAcen ^b		1.93	3.41		
Ph ₃ SnClAcen ^c		1.86	3.30		
2		1.93	3.33		
			3.36		
Me ₂ SnCl ₂ Acen	1.12	1.96	3.51	90	94
Me ₂ SnCl ₂	1.16			90	94
Me ₂ SnBr ₂ Acen	1.30	1.96	3.51	e	e .
Me ₂ SnBr ₂	1.36			86	90
Bu ₂ SnCl ₂ Acen ^d		1.95	3.49	-	
Ph ₂ SnCl ₂ Acen ^b		1.93	3.47		
MeSnCl ₃ Acen	1.14	2.00	3.55	e	e
MeSnCl ₃	1.22		- · · · · ·	124	130

^a δ (CH-) 5.00 ppm; this signal is obscured in the adducts by a solvent signal around δ 4.80 ppm.^b Aromatics: δ 7.30-8.00 ppm, complex structure. ^c Solvent CDCl₃, at 100 MHz with Varian XL-100; δ (CH-) 4.97 ppm; aromatics at δ 7.20-7.80 ppm.^d δ (SnC₄H₉) 0.8-1.8 ppm, complex structure. ^c Not measured owing to insufficient solubility (25° and 40°).

COMPLEXES OF ORGANOMETALLIC COMPOUNDS XXVIII

60 MHz, at 25° in nearly saturated CD_3OD solutions, with TMS as internal standard. The results are reported in Table 1. Integration was not effected for MeSnCl₃Acen (owing to insufficient solubility) and for Ph₃SnClAcen (for which the ethylene bridge proton signal was partly obscured by solvent signals).

TABLE 2

OSMOMETRIC (AT 37°) and conductometric (At 26°) data of organometal halides and their Acen adducts in methanol solution.

Compound	Molar	ĩª	Molar	∧ molar	
	concn.		concn.	$(ohm^{-1} \cdot cm^2 \cdot mole^{-1})$	
	(×10 ²)				
Me ₃ SnCl	5.71	0.90	7.05×10^{-3}	22.2	
	3.73	0.92	7.05 × 10 ⁻ ⁴	64.3	
	2.53	0.90	7.05×10^{-5}	219.6	
Me ₃ SnClAcen	2.12	1.90	8.40×10^{-3}	21.3	
	1.74	1.93	8.40×10^{-4}	63.3	
	1.01	1.92	8.40×10^{-5}	201.4	
Ph ₃ SnCl	1.89	1.27	9.27×10^{-3}	9.6	
	1.19	1.43	9.27 × 10 ⁻⁴	33.0	
	0.96	1.58	9.27 × 10 ⁻⁵	106.5	
Ph ₃ SnClAcen	2.98	2.25	9.20×10^{-3}	10.5	
	1.86	2.28	9.20 x 10	36.3	
	0.97	2.55	9.20×10^{-5}	117.3	
Me ₂ SnCl ₂	4.36	1.25	1.04×10^{-2}	18.0	
	2.16	1.64	1.04×10^{-3}	56.6	
	1.13	1.93	1.04×10^{-4}	268.0	
Me ₂ SnCl ₂ Acen	1.50	2.42	0.995×10^{-2}	18.4	
	1.00	2.58	0.995×10^{-3}	57.5	
	0.49	2.97	0.995×10^{-4}	261.0	
Me ₂ SnBr ₂	4.72	1.27	8.30×10^{-3}	33.1	
	2.09	1.28	8.30×10^{-4}	84.1	
	0.84	1.95	8.30 × 10 ^{~5}	290.2	
Me ₂ SnBr ₂ Acen	2.08	2.29	8.20×10^{-3}	35.6	
	1.65	2.46	8.20×10^{-4}	88.3	
	1.15	2.56	8.20×10^{-5}	275.6	
Bu ₂ SnCl ₂	5.51	0.89	9.70×10^{-3}	8.9	
	3.02	1.08	9.70×10^{-4}	30.9	
	0.88	1.65	9.70×10^{-5}	213.4	
	1.99	2.22	9.50×10^{-3}	9.2	
Bu ₂ SnCl ₂ Acen		2.22		33.4	
	1.35	2.23	9.50 x 10 ^{~4}		
	0.96		9.50 × 10 ⁻⁵	217.0	
Ph ₂ SnCl ₂	2.70	1.63	8.60×10^{-3}	13.8	
	1.08	2.20	8.60 × 10 ⁻⁴	51.7	
Ph ₂ SnCl ₂ Acen	0.84	2.65	8.60 x 10 ⁻⁵	218.6	
	2.49	2.30	8.50×10^{-3}	13.7	
	1.01	2.46	8.50 × 10 ⁻⁴	41.9	
MeSnCl ₃	0.51	2.98	8.50×10^{-5}	194.0	
	3.99	1.31	7.30×10^{-3}	35.2	
	3.12	1.38	7.30×10^{-4}	128.0	
	1.11	1.68	7.30 × 10 ⁻⁵	411.2	
MeSnCl ₃ Acen	2.17	2.35	8.10×10^{-3}	48.2	
	1.26	2.44	8.10×10^{-4}	116.2	
	0.97	2.78	8.10 × 10~5	370.5	

^a Van 't Hoff factor.

The osmometric data were obtained in methanol solution, at 37° , by a Mechrolab 301 A vapor pressure osmometer. The determined Van 't Hoff "*i*" factors are listed in Table 2.

The conductometric measurements were carried out with a LKB Conductolyzer Type 5300 B, at 26° in a dry methanolic solution, cell constant 4.9 cm⁻¹. The results are reported in Table 2.

Data for organotin halides, listed in Tables 1 and 2, were measured for comparison purposes.

DISCUSSION

The electronic spectra of all the adducts (Fig. 1) correspond with the spectrum of free Acen⁵, which is consistent with previous reports on analogous derivatives of $ZnCl_2$ and lanthanide salts^{6,7}. This strongly suggests that the Acen residues maintain in methanol the ketamino H-bonded configuration characteristic for the free ligand^{5,8,9}, which also occurs in the solid polymeric organotin(IV) halide-Acen adducts².

The PMR spectra of the Acen moieties in CD_3OD solution (Table 1) essentially correspond to that of free Acen⁹. The absence of NH signals around δ 11 ppm⁹ is ascribable to deuteration due to exchange with D_2O . This would cause the observed coalescence into a singlet of the ethylene bridge proton signals⁹. In fact, the spectrum of Acen from Ph₃SnClAcen, measured for checking purposes (CDCl₃ solution, 100 MHz: see Table 1), shows the expected doublet for CCH₃⁹, as well as the triplet for ethylene bridge protons observed for free Acen and ascribed to coupling between NH protons (of the H-bonded ketamino ring) and ethylene bridge protons⁹.

Chelation of metal ion centers by neutral Acen through its ONNO basic atoms, is thus ruled out for the solutions^{1,7}. It would be inconsistent, *inter alia*, with the electronic spectra of chelating tetradentate $Acen^{2-}$, which bear no similarity to that of the neutral H-bonded ligand^{5,8}, and with the existence of R₃SnClAcen, in which the tin atom would attain the highly uncommon coordination number seven.

In the PMR parameters for the adducts in CD_3OD the chemical shifts of $SnCH_3$ protons in CD_3OD solution, Table 1, are consistent with values in other solvents^{10,11}. The data for Me₃SnCl and its Acen adduct coincide, which indicates that Me₃SnClAcen is fully dissociated in CD_3OD . The chemical shifts for the other methyltin(IV) systems are slightly shifted downfield for the free organotin halide with respect to its adduct, the difference increasing from the dichlorides to the dibromides to the trichlorides. Changes of chemical shifts of methyltin(IV) protons were observed upon coordination^{11,12}. The very limited effects mentioned above rule out the existence of extensive methyltin(IV)–Acen interaction, except possibly for MeSnCl₃Acen.

Complete dissociation is indicated for Me₃SnClAcen and Me₂SnCl₂Acen by the coincidence of the ¹¹⁷SnCH and ¹¹⁹SnCH coupling constants measured for solutions of the organometal halide and its Acen adduct. According to the system by Holmes and Kaesz¹³, 31% and 44% of s-character would be concentrated in Sn-C bonds for $(CH_3)_3Sn^{IV}$ and $(CH_3)_2Sn^{IV}$, respectively. This strongly suggests that CD_3OD molecules replaced Acen and (perhaps partly) chloride anions in coordinating Sn^{IV}, so that planar trigonal $(CH_3)_3Sn^{IV}$ and linear $(CH_3)_2Sn^{IV}$ are present in

solution phase.

The comparison between Van 't Hoff "i" factors and conductances for the organometal halides and their Acen derivatives (Table 2) further confirms the nature of the adducts in methanol solution. Molar conductances of a given organotin(IV) halide and its Acen adduct, at about the same concentration, are of the same order, which suggests that essentially the same conducting species are present in both systems. On the other hand, the number of particles per mole released by organotin(IV) halide-Acen generally tends to be one unit larger than that released by the uncoordinated organotin halide (Table 2). It thus seems likely that the methanol solutions of our adducts consist of nearly independent Acen and organotin(IV) halide residues with some of the complex species perhaps being present in MeSnCl₃Acen and Ph_2SnCl_3Acen solutions.

We conclude that the polymeric octahedral solid state structures advanced² for the Acen adducts here investigated are not present in dilute methanolic solutions, in which practically independent organotin(IV) halide and Acen moieties appear to exist. The organotins interact with the basic solvent, and undergo partial dissociation, while the neutral ligand maintains its peculiar ketoamino H-bonded configuration.

ACKNOWLEDGEMENTS

Financial support by CNR (Roma) and NATO (Grant No. 301) is gratefully acknowledged. We thank Dr. Wehrli (Varian AG, Zug) for the spectra at 100.1 MHz

REFERENCES

- 1 G. FARAGLIA, F. MAGGIO, R. CEFALÙ, R. BOSCO AND R. BARBIERI, Inorg. Nucl. Chem. Lett., 5 (1969) 177.
- 2 R. BARBIERI, R. CEFALÙ, S. C. CHANDRA AND R. H. HERBER, J. Organometal. Chem., 33 (1971) 97.
- 3 A. COMBES, C. R. Acad. Sci., 108 (1889) 1252.
- 4 P. J. MC CARTHY, R. J. HOVEY, K. UENO AND A. E. MARTELL, J. Amer. Chem. Soc., 77 (1955) 5820.
- 5 K. UENO AND A. E. MARTELL, J. Phys. Chem., 61 (1957) 257.
- 6 A. C. BELLAART, G. J. VAN DER DUNGEN, K. KUHER AND J. L. VERBEEK, Recl. Trav. Chim. Pays-Bas, 88 (1969) 1089.
- 7 N. K. DUTT AND K. NAG, J. Inorg. Nucl. Chem., 30 (1968) 3273.
- 8 A. E. MARTELL, R. LINN BELFORD AND M. CALVIN, J. Inorg. Nucl. Chem., 5 (1958) 170.
- 9 G. O. DUDEK AND R. H. HOLM, J. Amer. Chem. Soc., 83 (1961) 2099.
- 10 G. P. VAN DER KELEN, Nature, 193 (1962) 1069.
- 11 E. V. VAN DEN BERGHE AND G. P. VAN DEN KELEN, J. Organometal. Chem., 11 (1968) 479.
- 12 W. KITCHING, Tetrahedron Lett., 31 (1966) 3689.
- 13 J. R. HOLMES AND H. D. KAESZ, J. Amer. Chem. Soc., 83 (1961) 3903.